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* _Lnducton & Proof -I-ecbn:gue "Mml* is uselul por Proving Shutements

about elements in a Sezuence.

: TW Comavonen'l's of an induckive (Pmof_'..’

- Base case  estublishes Phak e theorem is True for Ye Bat vilue in « Sequence

° InJucﬁVe S+eP
holds B k+1.
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: —n’\e. Pn:nc.;pal of mathematical induchon States Phat iF e base case ('por n‘—") 1S true

omd He induckive step is +m<‘ Hen the theorem \\o\és for all Pos:tive in'|'c3cr5.
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n the statement "< (K imp Vies SCet) of the inductive step, the supposition that
SUQ 1S toue is called Fhe induchive h%poHnes:s.
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*This Seetion L)a,c) More examples of inductive prwfs.
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-The Pr.'nc.'yle of S-l-nonj inducHon  assumes Pok e fact + be Proven  holds For

all  values less Hhan oc cqual ® K and proves That e fact holds for K+l

Loduetive Shep for weak induction Taductive Step fr strong  induchon!
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* The base case for Pﬂ.,,g by steons induckon establiches Yat SN Yolds H- n= o thauwh

‘), where & ond b are constunts.

* The induchie step in a proof by shrony induction assumes SG) is e for all Values of

in Hhe fange From a 'P"Mal' Some integer k2b omd then (P roves Hat  Hheorem holds $or Kl

. -Tlie well - ocdering Pr:nc:Ple Says 'P‘wd' oony. nmemgty  Subsek of Nonne yative

integes has o Smallest element.



